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ABSTRACT

The statistics profession has been remiss in ex-

ploiting the numerous advances in simulation

methodology. The purpose of this article is to out-

line progress in variate generation relevant to the

conduct of statistical simulation studies. The em-

phasis is on multivariate distributions, a thriving

area of research.

1. INTRODUCTION

Once upon a time (circa 1960’s), statisticians

would report simulation studies that used whatever

probability distributions they happened to know how

to generate. Since the list of generators was not

particularly extensive, studies generally consisted

of isolated results pertaining to particular

distributions. To their credit, researchers of this

era tended to admit the limitations of their studies

and to acknowledge that extrapolations to other dis-

tributions or classes of distributions wo(,ld require

additional work or tenuous assumptions. As time

passed and simulation methodology evolved,

capabilities in conducting simulation studies ad-

vanced to the point where researchers had to make



decisions as to what to simulate. The decision

making process of selecting distributions in statis-

tical simulation studies is the topic of this paper.

As motivation for the relevance of this problem, let

me cite some particular reasons given by various

authors for the distributions included in their

studies:

1. Legal precedence. The distributions

selected were the same as those included by

earlier authors. As a case in point, cur-

rent Hotelling’s T2 simulations frequently

resemble those run by Chase and Bulgren

(1971) and Hopkins and Clay (1963). When

these two studies appeared they were just

fine and represented a true contribution to

knowledge of the robustness of Tz via Monte

Carlo methods. Since that time, a great

deal of progress has been made both in mul-

tivariate analysis and simulation

methodology. Are we still interested in the

the performance of T~ (or new nonparametric

alternatives) for the Marshall-Olkin

bivariate exponential distribution?

2. ~vailability implies suitability. The dis-

tributions selected were those available in

the statistical package which also does the

other calculations, It is a pity that the

packages cannot write the papers as well. I

like having the standard packages with a

simulation capability--it allows me to check

these codes for situations in which I know

what to expect. As versions change (both

the analysis and simulation parts), it be-

comes increasingly difficult to explain

results which cannot be reproduced.



3. Status quo. The distributions selected were

not defended. It is not uncommon to see

simulation studies reported with no comments

at all regarding the appropriateness of the

distributions selected. In one recent

situation, I managed to extract the follow-

ing “defense” that can be paraphrased as “I

see no reason why I should have to

demonstrate the usefulness or relevance of

the distributions included--I never have

before.” This view may seem a bit extreme

but ties into the old fashioned happy-go-

lucky mode of operation--include

distributions which can be generated rather

than what ought to be generated.

4. Novelty. The distributions selected had

never before been published and represented

a shot out of the blue. The novelty tactic

is useful in providing motivation for future

papers (“In a previous paper, the distribu-

tions developed here were found useful in a

simulation context.”). Generally speaking,

information on new distributions included is

useful in interpreting the results of

simulation studies.

2* GENERALGUIDELINES

Having ridiculed the above arguments for dis-

tribution selection, it seems appropriate to provide

some positive guidelines for developing rational

arguments. The following discussions outline schemes

corresponding to viable selection criteria.



1. Data specific models. Perhaps the most compell-

ing argument for defending the distributions

selected is that those distributions selected are

similar to those from which the future data sets

are to arise. In other words, select distribu-

tions in the simulations which supposedly mimic

the processes producing the data to be analyzed.

The disadvantage of this concept is that ex-

trapolating results to other situations which

occur later may not be possible. As an example

of a simulation study driven by these practical

situations, see Conover et al. (1981). The no-

tion of testing a procedure or evaluating

estimators on models similar to those observed in

practice is not new, the bootstrap method (Efron,

1977) exploits this notion. Sampling from

parametric models conforming to data sets allows

the possibility of generating new data outside

the range of the existing data set.

2. Quantitative selections to establish qualitative

features. In some situations it may be possible

to identify certain characteristics of interest

that existing parametric models can capture. In

a robustness study of the correlation coeffi-

cient, Devlin et al. (1981) argued convincingly

that the elliptically contoured class of dis-

tributions provide a useful framework for

assessing the performance of various estimators.

In a similar vein, Nachtsheim and Johnson (1586)

constructed anisotropic distributions for use in

investigating the small sample performance of

Hotelling’s Ti statistic.

3. Philosophy of quantitative departures from a

baseline model, An approach which is intuitively



appealing but ar present practically untested is

to couch the performance under varying distribu-

tions problem as an optimization problem. That

is, set up the search space as a class of prob-

ability distributions constrained in some fashion

(e.g., univariate, continuous, unimodal, finite

second ❑oment, etc.) and try to find the extreme

performance of a procedure over this class. The

advantage of a solution to this problem is that

the results apply to the class rather than just

the distributions actually selected.

4. Caveat emptor (and its closely related cousin,

the fishing expedition). A couple of situations

come to mind for which a less than ideal simula-

tion study can be conducted and justified.

Sometimes a very small simulation study relates

to conput~ng budgets, in which case it is dif-

ficult to condemn an author for something beyond

his control. In another situation, a simulation

study may be givrn as merely an indication of how

a procedure works in a few selected cases. The

Main Contribution of an article may be the

genesis of a procedure rather than its perfor-

mance under diverse circumstances. Whenever

limited studies are conducted, it is advisdble to

avoid sweeping recommendations.

3. UNIVARIATECONTINUOUSDISTRIBUTIONS

There are many univariate distributions that are

easy to generate and that can fit into the guidelines

provided in Section 2, Devroye’s (1986) comprehen-

sive text on non-unifcrm random variate generation

describes algorithms for the following distributions:



normal. exponential, gamma, beta, t, stable, Bessel

function, logistic, hyperbolic, von Mises, Burr,

generalized inverse Gaussian, and many scattered in

the exercises. The slash distribution (a normal

variate divided by an independent uniform) is popular

In statistical simulations, since it allows highly

precise calculations of estimator performance (I look

forward to someday seeing a data set that the slash

distribution satisfactorily models.) The point of

this list is that virtually any continuous,

univariate distribution can be generated reasonably

efficiently. ‘l’he difficulty is in culling tke list

to manageable yet meaningful proportions. The

guidelines given in Section 2 provide general rules

for ~electing distributions to include in a study.

4. CONTINUOUSMJLTIVA.RIATEDISTRIBUTIONS

The natural baseline case for multivariate

simulation studies is the multivariate normal

distribution. With mean vector Q and identity

covariance matrix, the multivariate normal distribu-

tion’s density function is proportional to exp[-(

x’x)/2] , where x is a p x 1 vector. In this sec-.-
tion, we explore reasonable departures from the

baseline multivariate normal. By “reasonablen, we

mean that the alternative distributions are

1 Easy to generate.

2. Have an identifiable property in-

herently and quantifiable distinct from

the multivariate normal distribution.

Ve turn now to a brief description of some of the

possible alternative distributions. A much more

detailed treatment can be found in Johnson (1987).



The easiest departure to consider is to vary the

marginal distributions from normal, preserving inde-

pendent t components. This strategy will reveal

effects due to the marginal distributions alone and

provide a reference point for subsequent departures

from dependence.

For considering symmetric alternatives to the

normal, tvo approaches are app~aling. First, con-

sider scale-contamination to the normil variates to

get t-variates. This is accomplished easily. If Xi

is a standard normal variate from ~ - Np (Q, I), then

take

Yi = Xi/J(Zi/n) , i = 1, .0., P

where
‘i

is an independent X2-variate with n degrees

of freedom. Notice that we can use the same set of

X variates with different Zi’s to effect agenerated _

variance reduction (via correlated random samples).

Using a

Yi’s.

have a

different Z for each Xi leads to independent

If the same Z used for each Xi, then Y would

spherically symmetric t-distribution vith un-

correlated (if the moments exist) but dependent

components. The parameter n need not be an integer.

A candidate set of values for n is (30, 10, 5, 2, 1,

.5). The results obtained using n.30 ought to agree

pretty WC1l with the baseline normal case unless the

procedure is ~ery sensitive to minor departures from

normality. The value of n-l corresponds to the

heavy-tailed Cauchy distribution. The Cauchy dis-

tribution and in fact even heavier-tailed

distribution have been observed in some experiments

(Beckman and Johnson, 1987), so these distributions

are not as far out as some might think (on the basis

of nob-existent moments).

The t-distributions noted above have tails

heavier than the baseline normal. The generalized



exponential power distribution (Johnson, Tietjen,

Beckman, 1986) iS another class of symmetric

univariate distributions that is easy to generate, is

amenable to variance reduction designs, and brackets

the baseline normal in a reasonable fashion. The

genesis of the distribution is embodjed in the fol-

lowing generation algorithm:

1. Generate V - I’(a, 1), a> O.

2. Transform using X . ~WT where T>O and

“+” denotes a random sign.

3. Translate as a[3r(a)/~(a+2~)]
1/2

X+p.

The resulting variate from step 3 has mean D,
2variance a and is symmetric, unimodal about p.

140reover, for a = 3/2 and T = 1/2, the distribution

iS normal (u, U2); for a-t=l, the ordinary exponen-

tial power distribution occurs. The general

exponential power distribution includes the normal as

an i,ltermediate special case, rather than a limiting

case as in the t-distributiori (n + =). Heavier than

normal tails occur for a < 3/2. A variance reduction

design is possible by reuse of the gamma variates in

step 1 for various ~ values. For additional details,

see Johnson (1987, Section 2.4).

For asymmetric alternatives from the normal, a

nice progression away from normality can be obtained

using the iognormal distribution. If X is normal (O,

U2) then Y . Aexp(X) + E is lognormal with shape

parameter a. The lognormal tends to the normal as u

+ o. A candidate set of shape parameter values is

(.01, .5, ).., 2.). The parameters A and ~ can be

selected to achieve a specified mean and variance.

Implicitly it has been assumed in the above dis-

tributions that sach marginal distribution is the

same. There is nothing wrong with exploring effects



due to non-normal ❑arginals in a subset of the

components. It is conceivable that some statistical

procedures can tolerate one or two highly non-normal

marginal components if the remaining components are

normal.

More intellectually satisfying departures from

baseline multivariate normality involve the introduc-

tion of dependence among the component distribution.

This type of departure is the primary theme of

~uitivariate Statistical Simulation and has been a

major area of the author’s research for the past ten

years. The presentation here will focus on various

representations of the multivariate normal and then

examine adjustments to these constructions.

Consider first the general representation

(Cambanis, Huang, and Simons, 1977)

(3.1)

where R is a scalar random variable independent of

U(n) that is uniform on— the n-dimensional unit

hypersphere. For R distributed as 4X2
(n)’ ~ ‘s ‘ulti-

variate normal with mean vector ~ and identity

covariance matrix. Distributions having repre-

sentation (3.1) aru spherically symmetric and differ

from the multivatiate normal through appropriate

choice of R. TWO reasonable choices for the dis-

tribution of R2 are the Pearson Type VI and the beta

distribution. In the former case, a Pearson Type W

has density function:

g(z) ~ @ - 1 (1 + Z)-m, z >0.

The corresponding distribution of X is multivariate

Pearson Type VII having density function:



h(~) =
1

(1 + X’x)m--

For the other case consider R* having a beta dis-

tribution with parameters p/2 and m + 1. Using this

distribution in the basic representation leads to the

multivariate Pearson Type II distribution having

clozsity function

f(@ = (1 - X’x)m--

on the finite support

ting, a reasonable

Types is, as follovs:

X’x < 1. In the bivariate set----
set of cases for these Pearson

TypeII: m--.5, O, .5, 1., 2., 5.

Type VII: m = 1.1, 1.5, 2., 3., 10.

In both sets, large values of m correspond to near

bivariate normality.

As noted earlier, the Pearson Type VIS can be

generated using the alternate representation

‘i = ‘i’+(x~n)’n)

wheze a single X2 variate is used for each Xi.

Another possible approach to generalizing the

basic construction (3,1) is to consider non-uniform

distributions for the vector U
(n). This approach Ilas

been explored by Nachtsheim and Johnson (1986). A

nice feature here is that there are many existing,

well-studied distributions on the circle or sphere to

employ in (3.1). In particular, they cons’.der car-

dioid, triangular, Von Ilises, offset normal, vrapped

Cauchy, and wrapped normal in tvo dimensions and

Bingham and Fisher in three dimensions. The basic,

general density form in two dimensions is:



f(x,y) = h[tan-l(y/x)] exp[-(x2+y2);2],

where h(e) has support (O, 2n). Of ctwrse, in relax-

i ng uniformity of u(n), the resulting marginal

distributions vary as well. ~owever, this is the

price to be paid to accomplish directional asymmetry.

The above scheme~ allow scrutinizing statistical

procedures under reasonable departures from

normality. In a sense, among the many multivariate

di~tributions available these set-ups allow the most

controlled experiments in exploring non-normality.

There are other distributions which particular cir-

cumstances might dictate consideration. The

following distributions are further considered by

Johnson (1987):

Johnson translation system

lognormal
-1

sinh -normal

lo~it normal

Khintchine distributions

Burr-Pareto-logistic family

lliscellaneous

Horgenstern (a/k/a Gumbel-Farlie-Eyraud)

Plackett

Vishar\

Ali-t4ikhail-Haq



‘ 5. PLOTS.

A useful device for studying bivariate distribu-

tions (especially bivariate) is contour and three-

dimensiond plots. Some sample plots similar to

those found in Johnson (1987) are given to stimulate

the interest of the reader.

6. SU?IIIARY●

The topic of distribution selection in statisti-

cal simulation is one of increasing importance, as

the selection process is critical to the eventual

success of a study. Treating distributions as fac-

tors or controlled variables in a design context is

an esse,ltial first step to conducting meaningful

simulations.
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